Mechanisms for force adjustments to unpredictable frictional changes at individual digits during two-fingered manipulation.
نویسندگان
چکیده
Previous studies on adaptation of fingertip forces to local friction at individual digit-object interfaces largely focused on static phases of manipulative tasks in which humans could rely on anticipatory control based on the friction in previous trials. Here we instead analyze mechanisms underlying this adaptation after unpredictable changes in local friction between consecutive trials. With the tips of the right index and middle fingers or the right and left index fingers, subjects restrained a manipulandum whose horizontal contact surfaces were located side by side. At unpredictable moments a tangential force was applied to the contact surfaces in the distal direction at 16 N/s to a plateau at 4 N. The subjects were free to use any combination of normal and tangential forces at the two fingers, but the sum of the tangential forces had to counterbalance the imposed load. The contact surface of the right index finger was fine-grained sandpaper, whereas that of the cooperating finger was changed between sandpaper and the more slippery rayon. The load increase automatically triggered normal force responses at both fingers. When a finger contacted rayon, subjects allowed slips to occur at this finger during the load force increase instead of elevating the normal force. These slips accounted for a partitioning of the load force between the digits that resulted in an adequate adjustment of the normal:tangential force ratios to the local friction at each digit. This mechanism required a fine control of the normal forces. Although the normal force at the more slippery surface had to be comparatively low to allow slippage, the normal forces applied by the nonslipping digit at the same time had to be high enough to prevent loss of the manipulandum. The frictional changes influenced the normal forces applied before the load ramp as well as the size of the triggered normal force responses similarly at both fingers, that is, with rayon at one contact surface the normal forces increased at both fingers. Thus to independently adapt fingertip forces to the local friction the normal forces were controlled at an interdigital level by using sensory information from both engaged digits. Furthermore, subjects used both short- and long-term anticipatory mechanisms in a manner consistent with the notion that the central nervous system (CNS) entertains internal models of relevant object and task properties during manipulation.
منابع مشابه
Control of grasp stability in humans under different frictional conditions during multidigit manipulation.
Control of grasp stability under different frictional conditions has primarily been studied in manipulatory tasks involving two digits only. Recently we found that many of the principles for control of forces originally demonstrated for two-digit grasping also apply to various three-digit grasps. Here we examine the control of grasp stability in a multidigit task in which subjects used the tips...
متن کاملControl of forces applied by individual fingers engaged in restraint of an active object.
We investigated the coordination of fingertip forces in subjects who used the tips of two fingers to restrain an instrumented manipulandum with horizontally oriented grip surfaces. The grip surfaces were subjected to tangential pulling forces in the distal direction in relation to the fingers. The subjects used either the right index and middle fingers (unimanual grasp) or both index fingers (b...
متن کاملFINAL ACCEPTED VERSION Prehension stability: Experiments with expanding and contracting handle
We investigated adjustments in digit forces and moments during holding a vertically oriented handle under slow, externally imposed changes in the width of the grasp. Subjects (n=8) grasped a customized motorized handle with five digits and hold it statically in the air. The handle width either increased (expanded) or decreased (contracted) at a rate of 1.0, 1.5, or 2.0 mm/s, while the subjects ...
متن کاملPrehension stability: experiments with expanding and contracting handle.
We studied adjustments in digit forces and moments during holding a vertically oriented handle under slow, externally imposed changes in the width of the grasp. Subjects (n = 8) grasped a customized motorized handle with five digits and held it statically in the air. The handle width either increased (expanded) or decreased (contracted) at a rate of 1.0, 1.5, or 2.0 mm/s, while the subjects wer...
متن کاملPredictions specify reactive control of individual digits in manipulation.
When humans proactively manipulate objects, the applied fingertip forces primarily depend on feedforward, predictive neural control mechanisms that depend on internal representations of the physical properties of the objects. Here we investigate whether predictions of object properties also control fingertip forces that subjects generate reactively. We analyzed fingertip forces reactively suppo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 80 4 شماره
صفحات -
تاریخ انتشار 1998